Suite De Fibonacci Et Nombre D Or Exercice Corrigé D

La suite de Fibonacci est la suite définie par ses deux premiers termes \(F_0=F_1=1\) et par la relation de récurrence suivante:$$\forall n\in\mathbb{N}, \ F_{n+2}=F_{n+1}+F_{n}. $$ Nous allons nous pencher sur cette suite afin de déterminer une expression de son terme général en fonction de son rang. Leonardo Bonacci, dit Fibonacci La première chose que j'ai envie d'écrire, c'est:$$\forall n\in\mathbb{N}, \ F_{n+2}-F_{n+1}-F_n=0. $$Ensuite, je me dis que ça serait cool si cette suite était géométrique… Bon, elle ne l'est pas, mais j'ai envie de voir un truc… Supposons alors que \(F_n=q^n\), où \(q \neq 0\). Alors, la relation précédente devient:$$q^{n+2}-q^{n+1}-q^n=0$$ soit:$$q^n(q^2-q-1)=0. $$Comme \(q\) n'est pas nul, cela signifie que \(q^2-q-1=0\), c'est-à-dire, après calcul du discriminant, je trouve deux valeurs possibles pour \(q\):$$q_1=\frac{1-\sqrt5}{2}\text{ ou}q_2=\frac{1+\sqrt5}{2}. $$Mais bon… je ne suis pas si stupide que ça: je vois bien que ni \((q_1^n)\) ni \((q_2^2)\) ne convient car les deuxièmes termes de ces deux suites ne coïncident pas avec le deuxième terme de la suite de Fibonacci.

Suite De Fibonacci Et Nombre D Or Exercice Corrigé Pour

Accueil > Mots > Suites > Fibonacci > Fibonacci 4 Nombre d'or La relation de récurrence linéaire u(n)=u(n-1)+u(n-2) a pour équation caractéristique x 2 =x+1 ou encore x 2 - x - 1 = 0 de discriminant Delta = 5 et de racines a=(1-5 ½)/2 et b=(1+ 5 ½)/2 (b est le nombre d'or) On a donc une formule explicite directe u(n) = A a n + B b n où A et B dépendent de u(0) et de u(1). La suite de Fibonacci vérifie F(n) = (b n - a n) / 5 ½ a=-0, 618033988749894848... et b=1, 618033988749894848... Comme |a| = 0, 618... < 1, pour n suffisamment grand, F(n) est très proche de b n / 5 ½ Exemple: F(10) = 55 et b 10 / 5 ½ = 55. 0036361 La suite de Fibonacci est proche d'une suite géométrique de raison b et pour n suffisamment grand, F(n+1) est proche de b F(n) Exemple: F(10) = 55, F(11) = 89 et b × F(10)=88. 9918693 Développement en fraction continue du nombre d'or On sait que b= (1+ 5 ½)/2 vérifie b 2 = b+1 donc b = 1 + 1/b = 1+1/(1+1/b) = 1+1/(1+1/(1+1/b)) =... Le nombre d'or est approché par les quotients successifs F(n+1) F(n): 1 2 3 5 8 13 8... D'ailleurs, en divisant par F(n+1) la relation F(n+2) = F(n+1) + F(n), on obtient F(n+2) / F(n+1) = 1 + F(n) / F(n+1) ou encore ce qui permet de montrer que l'on a bien les réduites successives du nombre d'or.

On doit la suite de Fibonacci à Léonard de Pise, également connu sous le nom de Leonardo Fibonacci, né en 1175 et auteur de nombreux manuscrits mathématique d'importance. Il est célèbre pour avoir rapporté et démocratisé la notation numérique indo-arabe, que l'on utilise aujourd'hui quotidiennement, au détriment des chiffres romains. En mathématiques, la suite de Fibonacci est une suite de nombres entiers dont chaque terme successif représente la somme des deux termes précédents, et qui commence par 0 puis 1. Ainsi, les dix premiers termes qui la composent sont 0, 1, 1, 2, 3, 5, 8, 13, 21 et 34. Cette suite à la logique simple est considérée comme le tout premier modèle mathématique en dynamique des populations. Mais si cette suite est aussi célèbre aujourd'hui, c'est parce qu'elle a un taux de croissance exponentiel qui tend vers le nombre d'or, un ratio symbolisé par « φ », associé à de nombreuses qualités esthétiques au sein de notre civilisation. Sa valeur exacte est de (1+√5)/2, ayant comme dix premières décimales 1, 6180339887… Ce rapport, considéré comme la clé de l'harmonie universelle, se décline et se transpose par des formes géométriques telles que le rectangle, le pentagone et le triangle.