Nombres Complexes - Lieux Géométriques - 1 - Maths-Cours.Fr

Bonjour, Bin... tu as trouvé! ça veut seulement dire que a = 4b - 3, ce qui est l'équation d'une droite dans le plan complexe (a, b). Mais ce n'est pas tout. Tu vois que les point A(-3, 0) et B(1, 1) sont sur cette droite. Nombres complexes (trigonométrie et géométrie). Donc les points z pour lesquels f(z) est réel sont ceux situés sur la droite (AB). Le point A a pour image 0, et le point B un "point à l'infini". Ca peut se voir directement si tu notes que f(z) = (z - A) / (z - B) (les A et B étant ceux de l'énoncé, pas ceux de z=a+ib). Je ne le dirai jamais assez: il faut faire des dessins!!! -- françois

Lieu Géométrique Complexe Des

est un triangle rectangle isocèle de sommet tel que. A partir de chaque point du segment, on construit les points et, projetés orthogonaux respectifs de sur les droites et, et les points et, sommets du carré de diagonale avec. On se propose de déterminer les lieux de et lorsque le point décrit le segment Utiliser l'appliquette pour établir des conjectures sur ces lieux géométriques (Java - env. 150Ko) On choisit le repère orthonormal avec et. Dans ce repère, a pour affixe ( est un réel positif). 1) Montrer que l'affixe du point peut s'écrire où est un réel de. Exercices corrigés -Nombres complexes : géométrie. En déduire les affixes des points et. Aide méthodologique Aide simple Aide simple Solution détaillée 2) On note les affixes respectives de Démontrer que: et. Aide méthodologique Aide simple Aide simple Solution détaillée 3) En déduire que la position du point est indépendante de celle du point. Préciser cette position par rapport à et. Aide simple Aide méthodologique Solution détaillée 4) Vérifier que. En déduire le lieu du point décrit le segment.

Le nombre non nul z + 1 − i z − i \frac{ z+1 - i}{ z - i} est un imaginaire pur si et seulement si son argument vaut π 2 \frac{\pi}{2} ou − π 2 - \frac{\pi}{2} (modulo 2 π 2\pi). Or d'après le cours a r g ( z − z B z − z A) = ( A M →; B M →) \text{arg}\left(\frac{z - z_{B}}{z - z_{A}}\right)=\left(\overrightarrow{AM};\overrightarrow{BM}\right) Remarque Cette propriété ne s'applique que si A ≠ M A\neq M et B ≠ M B\neq M) (sinon l'angle ( A M →; B M →) \left(\overrightarrow{AM};\overrightarrow{BM}\right) n'existe pas! ). C'est pourquoi on a traité les cas "limites" z = i z=i et z = − 1 + i z= - 1+i séparément. Le nombre z + 1 − i z − i \frac{ z+1 - i}{ z - i} est donc un imaginaire pur si et seulement si l'angle A M B ^ \widehat{AMB} est un angle droit. Nombres complexes - Un résultat de géométrie.... Or on sait que l'angle A M B ^ \widehat{AMB} est un angle droit si et seulement si M M appartient au cercle de diamètre [ A B] \left[AB\right]. L'ensemble ( E) \left(E\right) est donc le cercle de diamètre [ A B] \left[AB\right] privé du point A A (mais on conserve le point B B).