2Nd - Exercices - Fonction Inverse

Exercice de maths avec encadrement de fonction inverse, seconde, tableau de variation, comparaison de fraction, équation, graphique. Exercice N°573: 1) Dresser le tableau de variations de la fonction inverse. 2-3-4-5) A l'aide de la question précédente, compléter: 2) Si 2 ≤ x ≤ 5 alors …. ≤ 1 / x ≤ …. 3) Si -3 ≤ x ≤ -1 alors 4) Si 4 ≤ x alors 5) Si -4 ≤ x ≤ 1 alors 6) Résoudre 1 / x ≥ 2. 7) Si x ∈ [4; +∞[, à quel intervalle appartient 1 / x? 8) Soit x ≥ 0, comparer soigneusement 1 / ( x + 5) et 1 / ( x + 7). On veut dans ces deux questions 9) et 10), résoudre l'équation 1 / x = x – 1. Fonction inverse exercice 3. 9) En utilisant la représentation graphique de la fonction inverse, faire une conjecture sur les solutions de cette équation. 10) Prouver cette conjecture (piste: on pourra utiliser les variations d'une fonction polynôme du second degré). Bon courage, Sylvain Jeuland Mots-clés de l'exerice: encadrement, fonction inverse, seconde. Exercice précédent: Inverse – Domaine, variation, encadrement, comparaison – Seconde Ecris le premier commentaire

Fonction Inverse Exercice 3

Exercice 4: Résoudre des inéquations grâce à la courbe de la fonction inverse. En s'aidant de la courbe de la fonction inverse, résoudre l'inéquation: \(\dfrac{1}{x} \lt -3\) Exercice 5: Comparer des inverses. On sait que \(\dfrac{5}{4}\) \(<\) \(1, 673\), donc \(\dfrac{4}{5}\) \(\dfrac{1}{1, 673}\). On sait que \(\dfrac{5}{14}\) \(<\) \(\sqrt{3}\), donc \(\dfrac{14}{5}\) \(\dfrac{1}{\sqrt{3}}\). On sait que \(\pi \) \(>\) \(2, 665\), donc \(\dfrac{1}{\pi}\) \(\dfrac{1}{2, 665}\). Fonction inverse : Encadrements - Maths-cours.fr. On sait que \(- \dfrac{4}{11}\) \(<\) \(- \dfrac{5}{19}\), donc \(- \dfrac{11}{4}\) \(- \dfrac{19}{5}\). On sait que \(-0, 395\) \(<\) \(- \dfrac{2}{11}\), donc \(\dfrac{1}{-0, 395}\) \(- \dfrac{11}{2}\).

Fonction Inverse Exercice Corrigé Pdf

(Cela signifie que la fonction MONTE donc on commencera dans la ligne 2 x − 4 2x-4 par le signe ( −) \left(-\right) et dès que l'on dépasse la valeur x = 2 x=2 on mettra le signe ( +) \left(+\right) dans le tableau de signe. Exercice 6 sur les dérivées. ) Troisi e ˋ mement: \red{\text{Troisièmement:}} 2 x + 4 = 0 ⇔ 2 x = − 4 ⇔ x = − 4 2 ⇔ x = − 2 2x+4=0\Leftrightarrow 2x=-4\Leftrightarrow x=\frac{-4}{2}\Leftrightarrow x=-2 Soit x ↦ 2 x + 4 x\mapsto 2x+4 est une fonction affine croissante car son coefficient directeur a = 2 > 0 a=2>0. (Cela signifie que la fonction MONTE donc on commencera dans la ligne 2 x + 4 2x+4 par le signe ( −) \left(-\right) et dès que l'on dépasse la valeur x = − 2 x=-2 on mettra le signe ( +) \left(+\right) dans le tableau de signe. ) Le tableau du signe de f ′ ( x) f'\left(x\right) est alors:

Soit x x un réel non nul. Que peut on dire de 1 x \frac{1}{x} dans chacun des cas suivants?