Oral De Rattrapage En Mathématiques Au Bac Général

Cet article a pour but de présenter des méthodes de calcul des équivalents pour les suites récurrentes et plus précisément pour les suites de la forme u_0 \in \mathbb{R}, u_{n+1} = f(u_n) Grâce à cette méthode on va pouvoir résoudre des exercices comme celui-ci: La théorie Commençons par la théorie! On a une suite (u n) dont on cherche un équivalent. On va considérer la suite v définie par: v_n = u_{n+1}^{\alpha} - u_n^{\alpha} Avec α un paramètre à déterminer. Les-Mathematiques.net. Et voici comment on va le déterminer et c'est la clé de la méthode. On cherche α tel que u_{n+1}^{\alpha} - u_n^{\alpha} \rightarrow l \neq 0 \in \mathbb{R} Et j'insiste, l doit être non nulle. Une fois qu'on a trouvé ce α, à condition qu'il existe. On sait que Et donc la série des v n diverge. On peut donc appliquer le théorème de sommation des équivalents: \begin{array}{l} \displaystyle \sum_{k=0}^{n-1} v_k \sim nl \\ \Leftrightarrow \displaystyle \sum_{k=0}^{n-1}u_{k+1}^{\alpha} - u_k^{\alpha} \sim nl\\ \Leftrightarrow \displaystyle u_{n}^{\alpha} - u_0^{\alpha} \sim nl\\ \Rightarrow \displaystyle u_{n}^{\alpha} \sim nl \end{array} Ce qui justifie la dernière étape est que u 0 est une constante donc négligeable devant l'autre terme.

  1. Suite par récurrence exercice sur

Suite Par Récurrence Exercice Sur

u_{1+1}=\frac{3}{4}u_1+\frac{1}{4}\times 1+1 On remplace u_1 par sa valeur \frac{7}{4} déterminée précédemment. u_{1+1}=\frac{3}{4}\times \frac{7}{4}+\frac{1}{4}\times 1+1 On calcule en respectant la priorité des opérations. u_{2}=\frac{21}{16}+\frac{1}{4}+1 Puis la somme en n'oubliant pas de mettre au même dénominateur. u_{2}=\frac{21}{16}+\frac{1}{4}\times\frac{4}{4}+1\times\frac{16}{16} u_{2}=\frac{21}{16}+\frac{4}{16}+\frac{16}{16} u_{2}=\frac{41}{16} (u_n) est définie par u_0=1 et u_{n+1}=\frac{3}{4}u_n+\frac{1}{4}n+1. Montrer par récurrence que n\leq u_n \leq n+1 pour n \in \mathbf{N}. Initialisation: J'écris la propriété au premier rang en remplaçant tous les n par 0. Suite par récurrence exercice du. 0\leq u_0\leq 1 vraie car u_0=1 Transmission ou hérédité:. n\leq u_n \leq n+1 et n+1 \leq n+\frac{4}{3} n\leq u_n \leq n+\frac{4}{3} \frac{4}{3}\times \frac{3}{4}n\leq \frac{4}{3}\times \frac{3}{4}u_n \leq \frac{4}{3}\times (\frac{3}{4}n+1) \frac{3}{4}n\leq \frac{3}{4}u_n \leq \frac{3}{4}n+1 n+1 -\frac{1}{4}n-1\leq \frac{3}{4}u_n \leq n+2-\frac{1}{4}n-1 n+1 \leq \frac{3}{4}u_n+\frac{1}{4}n+1 \leq n+2 n+1\leq u_{n+1} \leq (n+1)+1 étape n°1: j'écris la propriété au rang n en haut et je rajoute l'inégalité n+1 \leq n+\frac{4}{3} étape n°7: j'effectue les produits.

A n n'est pas toujours vrai pour n dans. Une valeur suffit: Pour n = 1, on a 4 1 + 1 = 5. 5 n'est pas un multiple de 3; donc A 5 est faux. Suite par récurrence exercice sur. Pour la récurrence de 3), ça va? Posté par Abde824 re: Suite et démonstration par récurrence 30-09-21 à 12:35 Oui ça va bien c'était assez facile, j'ai fait à peu près la même que pour la question 1. Posté par carpediem re: Suite et démonstration par récurrence 30-09-21 à 14:05 maintenant que c'est fini je reviens sur la récurrence: on peut se passer d'introduire un k en posant on a: or toute combinaison linéaire de multiples de 3 est multiple de 3...