Exercice Sur La Probabilité Conditionnelle

Partager: exercice Dans un pays, il y a de la population contaminée par un virus. On dispose d'un test de dépistage de ce virus qui a les propriétés suivantes: La probabilité qu'une personne contaminée ait un test positif est de (sensibilité du test). La probabilité qu'une personne non contaminée ait un test négatif est de (spécificité du test). On fait passer un test à une personne choisie au hasard dans cette population. On note l'évènement "la personne est contaminée par le virus" et l'évènement "le test est positif". et désignent respectivement les évènements contraires de et. 1 a Préciser les valeurs des probabilités. Traduire la situation à l'aide d'un arbre de probabilités. b En déduire la probabilité de l'évènement. 2 Démontrer que la probabilité que le test soit positif est. 3 a Justifier par un calcul la phrase: «Si le test est positif, il n'y a qu'environ de "chances" que la personne soit contaminée ». b Déterminer la probabilité qu'une personne ne soit pas contaminée par le virus sachant que son test est négatif.
  1. Exercice sur la probabilité conditionnelle femme
  2. Exercice sur la probabilité conditionnelle vecteurs gaussiens
  3. Exercice sur la probabilité conditionnelle plus

Exercice Sur La Probabilité Conditionnelle Femme

Exercices à imprimer pour la Terminale – Probabilité conditionnelle – TleS Exercice 01: Appels téléphoniques Une entreprise confie à une société de sondage par téléphone une enquête sur la qualité de ses produits. On admet que lors du premier appel téléphonique, la probabilité que le correspondant ne décroche pas est 0, 3 et que s'il décroche la probabilité pour qu'il réponde au questionnaire est 0, 2. On pourra construire un arbre pondéré. On note D 1 l'événement « la personne décroche au premier appel » et R 1 l'événement « la personne répond au questionnaire lors du premier appel ». Calculer la probabilité de l'événement R 1. Lorsqu'une personne ne décroche pas au premier appel, on la contacte une deuxième fois. La probabilité pour que le correspondant ne décroche pas la seconde fois est 0, 2 et la probabilité pour qu'il réponde au questionnaire sachant qu'il décroche est 0, 3. Si une personne ne décroche pas lors du second appel, on ne tente plus de la contacter. On note D 2 l'événement « la personne décroche au second appel », R 2 l'événement « la personne répond au questionnaire ».

Exercice Sur La Probabilité Conditionnelle Vecteurs Gaussiens

De combien de manières pourriez-vous ranger ces livres, si 1. Les livres de probabilités doivent être rang ́es ensemble? 2. Tous les livres d'un même module doivent être rangés ensemble? 3. Aucune restriction n'est mise? Exercice 5 Le long d'une autoroute, il y a trois barrières automatiques à des passages à niveau. La probabilité qu'une voiture qui circule sur cette autoroute trouve n'importe laquelle de ces barrières ouverte est p = 0, 8. Soit X la variable aléatoire qui représente le nombre de passages à niveau consécutifs franchis sans rencontrer une barrière fermée. 1. Caractériser la variable aléatoire X (valeurs de la variable X et sa loi de probabilité). 2. Quel est le nombre le plus probable de barrières consécutives ouvertes? Exercice 6 Une urne contient 20 boules numérotées de 1 à 20, on tire sans remise 3 boules. Quelqu'un parie qu'au moins une des boules tirées portera un numéro supérieur ou égal à 17. Soit X la variable aléatoire représentant le plus grand numéro tiré. Caractériser la variable aléatoire X.

Exercice Sur La Probabilité Conditionnelle Plus

On a donc $P(N)=\dfrac{15}{50}=0, 3$. "S'il découvre un numéro compris entre $1$ et $15$, il fait tourner une roue divisée en $10$ secteurs de même taille dont $8$ secteurs contiennent une étoile". Par conséquent $P_N(E)=\dfrac{8}{10}=0, 8$. b. On obtient l'arbre pondéré suivant: On veut calculer: $\begin{align*} p(N \cap E)&=p(N)\times p_N(E) \\ &=0, 3\times 0, 8 \\ &=0, 24\end{align*}$ La probabilité que le client trouve un numéro entre $1$ et $15$ et une étoile est égale à $0, 24$. Exercice 4 Une étude a montré que ces téléviseurs peuvent rencontrer deux types de défauts: un défaut sur la dalle, un défaut sur le condensateur. L'étude indique que: $3 \%$ des téléviseurs présentent un défaut sur la dalle et parmi ceux-ci $2 \%$ ont aussi un défaut sur le condensateur. $5 \%$ des téléviseurs ont un défaut sur le condensateur. On choisit au hasard un téléviseur et on considère les évènements suivants: $D$: « le téléviseur a un défaut sur la dalle » $C$: « le téléviseur a un défaut sur le condensateur ».

Publié le 12/01/2021 Plan de la fiche: Exercice 1 Exercice 2 Exercice 3 Exercice 4 Exercice 5 Exercice 6 Exercice 1. Soient 2 évènements A et B vérifiant: P(A) = 0, 4 p(B) = 0, 3 p(A⋃B) = 0, 58 A et B sont-ils indépendants? Exercice 2. Soient 2 évènements A et B vérifiant: p(A) = 0, 4 et p(B) = 0, 3 Calculer p(A∩B) et p(A⋃B) sachant que A et B sont incompatibles. Lire la suite de la fiche ci-dessous et la télécharger: Les autres fiches de révisions Décrochez votre Bac 2022 avec Studyrama!