Exercices Sur Produit Scalaire

Ce site vous propose plusieurs exercices sans qu'il soit nécessaire d'en ajouter ici ( exercice sur l'orthogonalité et exercices sur l'orthogonalité dans le plan). Sinon, on utilise généralement la formule du cosinus: \[\overrightarrow u. \overrightarrow v = \| \overrightarrow u \| \times \| {\overrightarrow v} \| \times \cos ( \overrightarrow u, \overrightarrow v)\] Et si vous ne connaissez que des longueurs, donc des normes, alors la formule des normes s'impose. \[ \overrightarrow u. \overrightarrow v = \frac{1}{2}\left( {{{\| {\overrightarrow u} \|}^2} + {{\\| {\overrightarrow v} \|}^2} - {{\| {\overrightarrow u - \overrightarrow v} \|}^2}} \right)\] Dans les exercices ci-dessous, le plan est toujours muni d'un repère orthonormé \((O\, ; \overrightarrow i, \overrightarrow j). \) Exercices (formules) 1 - Calculer le produit scalaire \(\overrightarrow u. \overrightarrow v. Exercices sur le produit scalaire - 02 - Math-OS. \) sachant que \(\| {\overrightarrow u} \| = 4, \) \(\overrightarrow v \left( {\begin{array}{*{20}{c}} 1\\1\end{array}} \right)\) et l' angle formé par ces vecteurs, mesuré dans le sens trigonométrique, est égal à \(\frac{π}{4}.

  1. Exercices sur le produit scalaire avec la correction
  2. Exercices sur le produit salaire minimum
  3. Exercices sur le produit scolaire les
  4. Exercices sur le produit scalaire 1ère s

Exercices Sur Le Produit Scalaire Avec La Correction

\vect{CA}=\vect{CB}. \vect{CH}$ Si l'angle $\widehat{ACB}$ est aigu alors les vecteurs $\vect{CK}$ et $\vect{CA}$ sont de même sens tout comme les vecteurs $\vect{CB}$ et $\vect{CH}$ Ainsi $\vect{CB}. \vect{CA}=CK\times CA$ et $\vect{CB}. \vect{CH}=CB\times CH$ Par conséquent $CK\times CA=CB\times CH$. Si l'angle $\widehat{ACB}$ est obtus alors les vecteurs $\vect{CK}$ et $\vect{CA}$ sont de sens contraires tout comme les vecteurs $\vect{CB}$ et $\vect{CH}$ Ainsi $\vect{CB}. \vect{CA}=-CK\times CA$ et $\vect{CB}. \vect{CH}=-CB\times CH$ Exercice 5 Dans un repère orthonormé $(O;I, J)$ on a $A(2;-1)$, $B(4;2)$, $C(4;0)$ et $D(1;2)$. Calculer $\vect{AB}. \vect{CD}$. Que peut-on en déduire? Démontrer que les droites $(DB)$ et $(BC)$ sont perpendiculaires. Calculer $\vect{CB}. Exercices sur le produit scolaire à domicile. En déduire une valeur approchée de l'angle $\left(\vect{CB}, \vect{CD}\right)$. Correction Exercice 5 On a $\vect{AB}(2;3)$ et $\vect{CD}(-3;2)$. Par conséquent $\vect{AB}. \vect{CD}=2\times (-3)+3\times 2=-6+6=0$. Les droites $(AB)$ et $(CD)$ sont donc perpendiculaires.

Exercices Sur Le Produit Salaire Minimum

\) 2 - Soit un parallélogramme \(ABCD. \) Déterminer \(\overrightarrow {AB}. \overrightarrow{AC}\) sachant que \(AB = 6, \) \(BC = 3\) et \(AC = 9. \) Corrigés 1 - On utilise la formule du cosinus. Il faut au préalable calculer la norme de \(\overrightarrow v. \) \(\| \overrightarrow v \| = \sqrt {1^2 + 1^2} = \sqrt{2} \) Par ailleurs, on sait que \(\cos(\frac{π}{4}) = \frac{\sqrt{2}}{2}\) (voir la page sur la trigonométrie). Donc \(\overrightarrow u. = 4 × \sqrt{2} × \frac{\sqrt{2}}{2} = 4\) 2- Nous ne connaissons que des distances. La formule des normes s'impose. Exercices sur le produit scolaire les. La formule comporte une différence de vecteurs. Déterminons-la grâce à la relation de Chasles. \(\overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow{AC}\) \(\ ⇔ \overrightarrow {AB} - \overrightarrow {AC} = \overrightarrow{CB}\) \(\ ⇔ \|\overrightarrow {AB} - \overrightarrow {AC}\|^2 = \|\overrightarrow{CB}\|^2\) Donc, d'après la formule… \(\overrightarrow {AB}. \overrightarrow{AC}\) \(= \frac{1}{2} \left(\|\overrightarrow {AB}\|^2 + \ |\overrightarrow {AC}\|^2 - \|\overrightarrow {AB} - \overrightarrow {AC}\| ^2 \right)\) \(\ ⇔ \overrightarrow {AB}.

Exercices Sur Le Produit Scolaire Les

Supposons non nulle, c'est-à-dire: On peut d'ailleurs, en raison de la continuité de en et en considérer que Par continuité de en il existe tel que et, pour tout: d'où a fortiori: c'est-à-dire: Il en résulte que: ce qui est absurde. On a démontré le: Lemme Si est continue, positive et d'intégrale nulle, alors Dans cet énoncé, on peut bien sûr remplacer l'intervalle par un segment quelconque. Considérons maintenant continue et strictement positive. Il est clair que est bilinéaire, symétrique et positive. En outre, si vérifie: alors d'après le lemme (appliqué à qui est continue positive et d'intégrale nulle): et donc puisque ne s'annule pas. Solutions - Exercices sur le produit scalaire - 01 - Math-OS. Voici maintenant la » bonne » version de ce résultat, avec des hypothèses minimales sur (qui est appelée fonction poids, … weight en anglais). On note. C'est l'image réciproque par du singleton autrement dit l'ensemble des valeurs en lesquelles s'annule. Proposition Rappelons que l'intérieur de noté est l'ensemble des réels vérifiant: Dire que est d'intérieur vide signifie que ne contient aucun intervalle non trivial.

Exercices Sur Le Produit Scalaire 1Ère S

\vect{BC}=0$ et $\vect{BC}. \vect{AB}=0$. De plus $ABCD$ étant un carré alors $AB=BC$. Les droites $(DL)$ et $(KC)$ sont perpendiculaires. $\vect{DL}=\vect{DC}+\vect{CL}=\vect{DC}-\lambda\vect{BC}$ $\vect{KC}=\vect{KB}+\vect{BC}=\lambda\vect{AB}+\vect{BC}$ $\begin{align*} \vect{DL}. \vect{KC}&=\left(\vect{DC}-\lambda\vect{BC}\right). \left(\lambda\vect{AB}+\vect{BC}\right) \\ &=\lambda\vect{DC}. \vect{BC}-\lambda^2\vect{BC}. Exercices sur le produit scalaire avec la correction. \vect{AB}-\lambda\vect{BC}. \vect{BC} \\ &=\lambda AB^2+0+0-\lambda BC^2 \\ Exercice 3 $ABCD$ est un parallélogramme. Calculer $\vect{AB}. \vect{AC}$ dans chacun des cas de figure: $AB=4$, $AC=6$ et $\left(\vect{CD}, \vect{CA}\right)=\dfrac{\pi}{9}$. $AB=6$, $BC=4$ et $\left(\vect{BC}, \vect{BA}\right)=\dfrac{2\pi}{3}$. $AB=6$, $BC=4$ et $AH=1$ où $H$ est le projeté orthogonal de $D$ sur $(AB)$. Correction Exercice 3 Les droites $(AB)$ et $(DC)$ sont parallèles. Par conséquent les angles alternes-internes $\left(\vect{CD}, \vect{CA}\right)$ et $\left(\vect{AB}, \vect{AC}\right)$ ont la même mesure.

Preuve de Par contraposée. Supposons et soient tels que Considérons une application nulle en dehors de et ne s'annulant pas dans Par exemple: Alors bien que ce qui montre que n'est pas définie positive. Encore par contraposée. Par hypothèse, il existe vérifiant Vue la continuité de il existe un segment ainsi que tels que: On constate alors que: ce qui impose pour tout Ainsi, Passer en revue les trois axiomes de normes va poser une sérieuse difficulté technique pour l'inégalité triangulaire. Montrons plutôt qu'il existe un produit scalaire sur pour lequel n'est autre que la norme euclidienne associée. Posons, pour tout: Il est facile de voir que est une forme bilinéaire, symétrique et positive. En outre, si alors (somme nulle de réels positifs): D'après le lemme démontré au début de l'exercice n° 6, la condition impose c'est-à-dire qu'il existe tel que: Mais et donc et finalement est l'application nulle. Ceci prouve le caractère défini positif. Suivons les indications proposées. Exercices sur produit scalaire. On définit une produit scalaire sur en posant: Détail de cette affirmation Cette intégrale impropre est convergente car (d'après la propriété des croissances comparées): et il existe donc tel que: Par ailleurs, il s'agit bien d'un produit scalaire.