Fiche De Révision Théorème De Pythagore Xercices Corriges

FICHE DE REVISION PYTHAGORE Théorème de Pythagore: Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des 2 autres côtés. ➔ Utilité: Calcul de longueur ou démonstration: un triangle n'est pas rectangle. Méthodes: 1) Calculer une longueur: D ➔ 3? M 9 R ➔ Le triangle MDR est rectangle en M, donc d'après le théorème de Pythagore, on a: RD 2 = MD 2 + MR2 RD 2 = 3 2 + 9 2 RD 2 = 9 + 81 RD 2 = 90 donc RD = √ 90 2) Prouver qu'un triangle n'est pas rectangle: A 2, 6 6, 5 I 7 ➔ Dans le triangle AMI, le plus grand côté est [MI]. On a: MI 2 = 7 2 = 49 et on a: AM 2  AI 2 = 6, 5 2  2, 62 = 42, 25  6, 76 = 49, 01 ➔ On constate que: MI 2 ≠ AM 2  AI 2 Pythagore, le triangle AMI n'est pas rectangle. Exercice 1: Calcule les longueurs manquantes des triangles suivants: Exercice 2: Montre que les triangles ABC suivants ne sont pas rectangles: a) AB = 24, 3 cm, AC = 32, 4 cm et CB = 40, 4 cm. b) AB = 65 mm, AC = 52, 8 mm et BC = 39, 6 mm.
  1. Fiche de révision théorème de pythagore xercices
  2. Fiche de révision théorème de pythagore r
  3. Fiche de révision théorème de pythagore xplication
  4. Fiche de révision théorème de pythagore ormule

Fiche De Révision Théorème De Pythagore Xercices

RÉCIPROQUE DU THÉORÈME DE PYTHAGORE Théorème de Pythagore Dans un triangle rectangle, l' hypoténuse est le côté opposé à l'angle droit. Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Les deux autres côtés sont appelés côtés adjacents à l'angle droit. Consigne: Appliquez la formule du théorème de Pythagore au triangle rectangle en. Correction: Utilisation des cookies Lors de votre navigation sur ce site, des cookies nécessaires au bon fonctionnement et exemptés de consentement sont déposés.

Fiche De Révision Théorème De Pythagore R

Topo-maths Il n'y a pas de magie à accomplir. Il s'agit vraiment de travail acharné, de choix et de persévérance. Aller au contenu Accueil 5ème Cours Devoirs Exercices 4ème 3ème Méthodologie Productions TICE Calculatrice Géogebra Scratch Tableur Applications Lexique Chaîne Youtube Contact ← 5e: corrigé de la deuxième série d'AP sur la symétrie centrale 3e (FM): Thalès → Publié le 21 octobre 2018 par mathsprof Une nouvelle série de documents – les fiches méthodes pour réviser activement les théorèmes importants avec à chaque fois sous quelle forme se présente l'exercice quelle propriété utiliser comment rédiger proprement la réponse avec tous les éléments Aujourd'hui le théorème de Pythagore. Pythagore-1 Pythagore Télécharger Ce contenu a été publié dans 3ème, Cours, Méthodologie. Vous pouvez le mettre en favoris avec ce permalien. Rechercher: Articles récents Un peu de culture! Une nouvelle année commence – nouvelles consignes Protégé: 4e: corrigé du test 13 sur les équations et les pourcentages Protégé: 4e: corrigé du DST 5 (fractions / Pythagore / Statistiques) Protégé: 3e: corrigé du DST 6 – Equations et Trigonométrie Chaine Youtube YouTube Exerciseurs Abonnez-vous à ce blog par e-mail.

Fiche De Révision Théorème De Pythagore Xplication

Agenda ACCES CDI CIO CONTACTS ENT ONISEP Transilien Liens Tous les liens Accueil > Mathématiques > Classes de 3ème > Théorème de Thalès et sa réciproque; révision sur Pythagore. Dernier ajout: 15 octobre 2010. INFOS et ACTUALITES CONTACTS et ACCES Mathématiques Classes de 6ème Nombres entiers et décimaux; comparaison. Figures élémentaires de la géométrie. Nombres décimaux: addition et soustraction. Cercles et constructions de triangles. Multiplication Parallèles et perpendiculaires. Division euclidienne; division décimale La symétrie axiale Ecritures fractionnaires Les angles Proportionnalité Aires et périmètres Classes de 5ème Nombres entiers et décimaux positifs: règles de priorité. Symétrie centrale; symétrie axiale (rappels). Calcul littéral; distributivité. Angles et caractérisation du parallélisme. Ecritures fractionnaires: comparaison; addition, soustraction. (1ère partie) Parallélogrammes Nombres relatifs: repérage et comparaison Parallélogrammes particuliers Addition et soustraction de nombres relatifs Triangles Ecritures fractionnaires: simplifications; multiplication (2ème partie) Classes de 4ème Opérations sur les nombres relatifs Droites des milieux dans un triangle Opérations sur les nombres en écriture fractionnaire Théorème de Thalès/Agrandrissements réductions Puissances Cosinus Calcul littéral Théorème de Pythagore Equations-Problèmes Classes de 3ème Livret d'entraînement aux méthématiques pour préparer la seconde générale!!!!

Fiche De Révision Théorème De Pythagore Ormule

On veut calculer la mesure exacte de la distance AC. [AB] et [AC] sont les côtés de l'angle droit, [BC] est l'hypoténuse. Nous pouvons appliquer le théorème de Pythagore et écrire: BC 2 = AB 2 + AC 2. Alors AC 2 = BC 2 − AB 2 ou encore AC 2 = 18, 752−152. Donc AC 2 = 126, 5625, soit AC = 11, 25 cm. 2°) On veut calculer un des côtés de l'angle droit. Soit DEF un triangle rectangle en D. On donne DF = 6 cm et EF = 9 cm. Calculer DE. DEF est un triangle rectangle en D. D'après le théorème de Pythagore, on a: DF 2 = DE 2 + EF 2 9 2 = DE 2 + 6 2 Soit 81 = DE 2 + 36 ⇔ 81 – 36 = DE 2 = 45 Ainsi DE ≃ 6, 7 cm Résoudre un problème à l'aide du théorème de Pythagore Deux chemins rectilignes D1 et D2 se coupent perpendiculairement en O. Deux très bons marcheurs P1 et P2 partent simultanément du point O et prennent chacun un des deux chemins à vitesse constante: v1=2 m/s pour P1 et v2=2, 5 m/s pour P2. • superBrevet Premium • Abonnez-vous pour accéder à 100% des QCM expliqués et fiches de révisions.

Réciproque du théorème de Pythagore: Dans un triangle, si le carré de la longueur du plus grand côté est égal à la somme des carrés des longueurs des 2 autres côtés, alors le triangle est rectangle et son hypoténuse est son plus grand côté. ➔ Utilité: démonstration: un triangle est rectangle. Méthode: 3) Prouver qu'un triangle est rectangle: O 8 17 P 15 T ➔ Dans le triangle TOP, le plus grand côté est [TO]. On a: TO 2 = 17 2 = 289 TP 2  OP 2 = 152  8 2 = 225  64 = 289 ➔ On constate que TO 2 = TP 2  OP 2 donc d'après la réciproque du théorème de Pythagore le triangle TOP est rectangle en P. Exercice 3: Montre que les triangles ABC suivants sont rectangles: a) AB = 7, 5 cm, BC = 10 cm et AC = 12, 5 cm. b) AB = 27, 9 m, AC = 37, 2 m et BC = 46, 5 m. c) AB = 18, 3 dm, AC = 30, 5 dm et BC = 24, 4 dm.

En bref En classe de quatrième, on énonce le théorème de Pythagore et sa réciproque. Ce théorème intervient souvent dans les exercices de brevet portant sur la trigonométrie. I Théorème de Pythagore Dans un triangle rectangle, le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Exemple: Le triangle ABC est rectangle en A, donc: BC 2 = AB 2 + AC 2 II La racine carrée d'un nombre Soit a un nombre positif. La racine carrée de a, notée a, est le nombre positif dont le carré est a. Exemple: ABC est un triangle rectangle en A tel que AB = 5 et AC = 3. Pour calculer la longueur BC, on applique le théorème de Pythagore. On a BC 2 = 5 2 + 3 2 = 34. La longueur BC est égale à la racine carrée de 34. On écrit BC = 34. III Réciproque du théorème de Pythagore Si, dans un triangle, le carré de la longueur du plus grand côté est égal à la somme des carrés des longueurs des deux autres côtés, alors ce triangle est rectangle. Exemple: Pour déterminer si le triangle ABC ci-contre (pas en vraie grandeur) est rectangle, on calcule les carrés des longueurs des trois côtés: AC 2 = 4 2 = 16 AB 2 = 3 2 = 9 BC 2 = 5 2 = 25.