Coefficient De Poisson — Wikipédia

Étant donné un réseau alors on peut définir le réseau dual (comme formes dans l' espace vectoriel dual à valeurs entières sur ou via la dualité de Pontryagin). Alors, si l'on considère la distribution de Dirac multidimensionnelle qu'on note encore avec, on peut définir la distribution Cette fois-ci, on obtient une formule sommatoire de Poisson en remarquant que la transformée de Fourier de est (en considérant une normalisation appropriée de la transformée de Fourier). Cette formule est souvent utilisée dans la théorie des fonctions thêta. En théorie des nombres, on peut généraliser encore cette formule au cas d'un groupe abélien localement compact. En analyse harmonique non-commutative, cette idée est poussée encore plus loin et aboutit à la formule des traces de Selberg et prend un caractère beaucoup plus profond. Un cas particulier est celui des groupes abéliens finis, pour lesquels la formule sommatoire de Poisson est immédiate ( cf. Analyse harmonique sur un groupe abélien fini) et possède de nombreuses applications à la fois théoriques en arithmétique et appliquées par exemple en théorie des codes et en cryptographie ( cf.

Formule De Poisson Physique Sur

La formule sommatoire de Poisson (parfois appelée resommation de Poisson) est une identité entre deux sommes infinies, la première construite avec une fonction, la seconde avec sa transformée de Fourier. Ici, f est une fonction sur la droite réelle ou plus généralement sur un espace euclidien. La formule a été découverte par Siméon Denis Poisson. Elle, et ses généralisations, sont importantes dans plusieurs domaines des mathématiques, dont la théorie des nombres, l' analyse harmonique, et la géométrie riemannienne. L'une des façons d'interpréter la formule unidimensionnelle est d'y voir une relation entre le spectre de l' opérateur de Laplace-Beltrami sur le cercle et les longueurs des géodésiques périodiques sur cette courbe. La formule des traces de Selberg, à l'interface de tous les domaines cités plus haut et aussi de l' analyse fonctionnelle, établit une relation du même type, mais au caractère beaucoup plus profond, entre spectre du Laplacien et longueurs des géodésiques sur les surfaces à courbure constante négative (tandis que les formules de Poisson en dimension n sont reliées au Laplacien et aux géodésiques périodiques des tores, espaces de courbure nulle).

Formule De Poisson Physique De

Mis en évidence (analytiquement) par Siméon Denis Poisson, le coefficient de Poisson (aussi appelé coefficient principal de Poisson) permet de caractériser la contraction de la matière perpendiculairement à la direction de l'effort appliqué. Illustration du coefficient de Poisson. Définition [ modifier | modifier le code] Dans le cas le plus général le coefficient de Poisson dépend de la direction de l'allongement, mais: dans le cas important des matériaux isotropes il en est indépendant; dans le cas d'un matériau isotrope transverse (en) on définit trois coefficients de Poisson (dont deux liés par une relation); dans le cas d'un matériau orthotrope on définit deux coefficients de Poisson (liés par une relation) pour chacune des trois directions principales. Le coefficient de Poisson fait partie des constantes élastiques. Il est nécessairement compris entre −1 et 0, 5, mais généralement positif. Certains matériaux artificiels et quelques matériaux naturels (certaines roches sédimentaires riches en quartz [ 1]) ont un coefficient de Poisson négatif; ces matériaux particuliers sont dits auxétiques.

Formule De Poisson Physique Des

Le coefficient principal de Poisson permet de caractériser la contraction de la matière perpendiculairement à la direction de l'effort appliqué. Ce coefficient a été mis en évidence analytiquement par Denis Poisson, mathématicien Français (1781 - 1840), auteur de travaux sur la physique mathématique et la mécanique, qui en détermina la valeur à partir de la théorie molé ulaire de la constitution de la matière. Il est défini par la formule n°1 ci-contre. Désigné par la lettre grecque ν, le coefficient de Poisson fait partie des constantes élastiques (2 pour un matériau isotrope ou 4 pour un matériau isotrope transverse). Il est théoriquement égal à 0, 25 pour un matériau parfaitement isotrope et est en pratique très proche de cette valeur. Dans le cas d'un matériau isotrope, le coefficient de Poisson permet de relier directement le module de cisaillement G au module de Young E. Le coefficient de Poisson est toujours inférieur ou égal à 1/2. S'il est égal à 1/2, le matériau est parfaitement incompressible.

La discrétisation de l'équation Nous allons discrétiser notre équation en réalisant un développement de Taylor d'ordre de nos deux dérivées partielles.

Cela signifie que les poutres sont un peu plus courtes car elles sont comprimées dans le sens vertical, mais un peu plus épaisses dans le sens horizontal. Calculez la déformation longitudinale, El, en utilisant la formule El = dL /L, où dL est le changement de longueur le long de la direction de la force, et L est la longueur d'origine le long de la direction de la force. Suivant l'exemple du pont, si une poutre d'acier supportant le pont mesure environ 100 mètres de haut et que la longueur varie de 0, 01 mètre, la déformation longitudinale est El = -0, 01 /100 = -0, 0001. Parce que la contrainte est une longueur divisée par une longueur, la quantité est sans dimension et n'a pas d'unités. Notez qu'un signe moins est utilisé dans ce changement de longueur, car le faisceau devient plus court de 0, 01 mètre. Calculez la déformation transversale, Et, en utilisant la formule Et = dLt /Lt, où dLt est le changement dans longueur le long de la direction orthogonale à la force, et Lt est la longueur d'origine orthogonale à la force.