Méthodes : Inégalités, Valeur Absolue, Partie Entière

Normalement tu as déjà dû voir cela en 3ème, tu disais alors, par exemple: alors Tu rédigeais comme cela directement sans passer par la valeur absolue, maintenant tu sais d'où ça vient^^ Si tu veux être sûr de ne pas te tromper, tu peux toujours faire la méthode de la factorisation. Si par exemple tu dois résoudre tu passes tout à gauche et tu factorises C'est une autre technique un peu plus longue mais au moins tu es sûr de ne pas oublier de solution! Bon il est maintenant temps de faire PLEIIIIIN d'exercices en vidéo, avec le nombre d'exemples qu'il y a, tu ne devrais plus avoir de soucis Pour les égalités, on vient de le voir, c'est assez simple. Pour les inégalités en revanche, c'est un peu différent! Les formules sont les suivantes: avec k positif, alors Exemple: Il y a bien sur également le cas contraire: On ne se sert pas souvent de ces formules au lycée donc ne te casse pas trop le tête avec ça, retiens plutôt les propriétés vues précédemment. Nous allons voir graphiquement l'explication de toutes ces formules, tu comprendras beaucoup mieux et tu retiendras ainsi beaucoup plus facilement.

  1. Primitive valeur absolut vodka
  2. Primitive valeur absolue a vendre

Primitive Valeur Absolut Vodka

Inscription / Connexion Nouveau Sujet Niveau Licence Maths 1e ann Posté par Soya 09-10-10 à 12:20 Bonjour à tous! En ce merveilleux samedi ensoleillé... Est-ce que vous pourriez m'aider à comprendre une partie d'un exo svp? J'ai une fonction f définie ainsi: |x|/(x 3) si |x| > 1 f(x) = x 1/3 si |x| 1 La question est de trouver une primitive de f(x) selon les valeurs de x. Voici la correction: (1/x) si x -1 F(x) = (3/4)x 4/3 - (7/4) si -1 1 En fait, quand |x| > 1, j'ai compris parce que comme x est positif, on a f(x) qui s'écrit 1/(x 2). Et une primitive de cette fonction est bien (-1/x) Mais pour les deux autres cas je ne vois vraiment pas comment faire... ^. ^' Merci d'avance pour l'aide que vous allez m'apporter. Posté par GaBuZoMeu re: Primitives d'une fonction avec valeur absolue 09-10-10 à 12:42 Ce n'est pas beaucoup plus dur de trouver une primitive sur les autres intervalles. Il ne faut pas oublier que "la" primitive n'est définie qu'à une constante près. Il s'agit ici de bien régler ces constantes pour trouver une fonction qui se recolle bien à la jonction des intervalles.

Primitive Valeur Absolue A Vendre

Posté par GaBuZoMeu re: Primitives d'une fonction avec valeur absolue 09-10-10 à 12:57 Citation: M'enfin!! Que vaut |x| pour x -1? Posté par Soya re: Primitives d'une fonction avec valeur absolue 09-10-10 à 13:02 Posté par GaBuZoMeu re: Primitives d'une fonction avec valeur absolue 09-10-10 à 13:08 Une primitive de f, qu'est-ce que ça veut dire? Est-ce que ce n'est pas la moindre des choses de demander qu'elle soit continue? Sinon comment pourrait-on la dériver? Je n'ai rien compris à ce que tu dis ensuite. Je crains que tu n'aies de gos problèmes avec les inégalités. Je reformule ma question: quand x -1, quel est le signe de x? Posté par Soya re: Primitives d'une fonction avec valeur absolue 09-10-10 à 13:20 Oula je viens de me relire et j'ai oublié de mettre x en valeur absolue Et oui T__T j'ai pas mal de problèmes en maths... Alors quand x -1, x]-;-1] donc x est négatif. Et une primitive doit être continue donc il faut trouver les valeurs constantes pour que F(x) soit continue. C'est bien ça?

Inégalité triangulaire Voici l'inégalité triangulaire: \forall x, y \in \R, |x+y| \leq |x| + |y| Exemple: |3 -2| = 1 ≤ |3| + |2| = 5 Si vous voulez plus de détails, allez voir notre cours sur les inégalités triangulaires. Exemple Exemple 1 Résoudre |x+2| ≤ 4 D'après l'inégalité vu dans les propriétés, cela est équivalent à \begin{array}{ll}&-4 \le x+2\le 4\\ \Leftrightarrow& -4 \le x+2\text{ et} x+2 \le\ 4\\ \Leftrightarrow &-6 \le x\text{ et} x \le 2\\ \Leftrightarrow& x \in\left[-6;2\right]\end{array} Exemple 2 Résoudre |x+2| = |x+5|. D'après le résultat sur les égalités dans les propriétés, on obtient: \begin{array}{ll}&x+2\ =\ x+5\text{ ou} x+2 = -\left(x+5\right)\\ \Leftrightarrow& 2 = 5\text{ ou} 2x =-7 \\ \Leftrightarrow& 2 = 5\text{ ou} x = -\dfrac{7}{2}\end{array} 2 = 5 n'étant pas une solution valide, seule la deuxième solution est correcte.