Cours Loi De Probabilité À Densité Terminale S Site

Exercice 1 On donne la représentation de la fonction densité de probabilité $f$ définie sur l'intervalle $[0;2, 5]$. $X$ suit une loi de probabilité continue de densité $f$. Déterminer graphiquement: $P(X<0, 5)$ $\quad$ $P(X=1, 5)$ $P(0, 5 \pp X \pp 1, 5)$ $P(X>2)$ $P(X \pg 1, 5)$ $P(X>1)$ $P(X>2, 5)$ $\quad Correction Exercice 1 On veut calculer l'aire d'un triangle rectangle isocèle de côté $0, 5$. Donc $P(X<0, 5)=\dfrac{0, 5\times 0, 5}{2}=0, 125$ Quand $X$ suit une loi de probabilité à densité alors, pour tout réel $a$ on a $P(X=a)=0$. Ainsi $P(X=1, 5)=0$ Il s'agit de calculer l'aire d'un rectangle dont les côtés mesurent respectivement $1$ et $0, 5$. Ainsi $P(0, 5\pp X\pp 1, 5)=1\times 0, 5=0, 5$. Loi de probabilité : Terminale - Exercices cours évaluation révision. Donc $P(X>2)=\dfrac{0, 5\times 0, 5}{2}=0, 125$ On veut calculer l'aire d'un trapèze rectangle. On utilise la formule: $\mathscr{A}_{\text{trapèze}}=\dfrac{(\text{petite base $+$ grande base})\times\text{hauteur}}{2}$. Ainsi $P(X\pg 1, 5)=\dfrac{(1+0, 5)\times 0, 5}{2}=0, 375$ On utilise la même formule qu'à la question précédente.

  1. Cours loi de probabilité à densité terminale s r.o
  2. Cours loi de probabilité à densité terminale s website
  3. Cours loi de probabilité à densité terminale s uk
  4. Cours loi de probabilité à densité terminale s site
  5. Cours loi de probabilité à densité terminale s web

Cours Loi De Probabilité À Densité Terminale S R.O

Ce que tu dois savoir sur cette fonction c'est son f, c'est-à-dire sa densité de probabilité. Cours loi de probabilité à densité terminale s r.o. Si X est une loi uniforme sur l'intervalle [a;b], alors pour tout x appartenant à [a;b]: Et f(x) vaut 0 en dehors de l'intervalle [a;b] Comme tu le vois ce n'est pas trop dur^^ Pour l'espérance on va faire le petit calcul: soit f la densité d'une loi uniforme sur un intervalle [a;b] ATTENTION! f ne vaut 1/(b-a) que sur l'intervalle [a;b], il faut donc découper notre intégrale en trois intégrales grâce au théorème de Chasles: car f(x) = 0 en dehors de l'intervalle [a;b]mais vaut 1/(b-a) sur l'intervalle [a;b] car 1/(b-a) est une constante Et donc voilà la formule que l'on souhaitait: Si X suit une loi uniforme sur l'intervalle [a;b]: Au-delà de la formule que tu dois savoir, c'est surtout le début du calcul qui est important et le principe: quand tu remplaces f, il faut faire très attention à ce que vaut f!!! Car très souvent f ne vaut pas la même chose suivant l'intervalle sur lequel on est, ici f valait 1/(b-a) sur l'intervalle [a;b] mais 0 en dehors de cet intervalle.

Cours Loi De Probabilité À Densité Terminale S Website

V La loi normale générale Loi normale \mathcal{N}\left(\mu;\sigma^2\right) Une variable aléatoire X suit la loi normale \mathcal{N}\left(\mu;\sigma^2\right) ( \mu \in \mathbb{R}, \sigma \in \mathbb{R}^{+*}) si et seulement si la variable aléatoire \dfrac{X-\mu}{\sigma} suit la loi normale centrée réduite. Espérance d'une loi normale Si X suit la loi normale \mathcal{N}\left(\mu;\sigma^2\right), son espérance est alors égale à: E\left(X\right) = \mu Variance d'une loi normale Si X suit la loi normale \mathcal{N}\left(\mu;\sigma^2\right), sa variance est alors égale à: V\left(X\right) = \sigma^2 et son écart-type est donc égal à \sigma. On observe que plus \sigma augmente, plus la courbe de la densité de la loi normale \mathcal{N}\left(\mu;\sigma^2\right) est "aplatie". De plus, cette courbe est centrée sur la moyenne, c'est-à-dire symétrique par rapport à la droite d'équation x=\mu. Probabilité à densité|cours de maths terminale. Si \mu=0 et \sigma=1, on retrouve la courbe de Gauss normalisée, soit la loi normale centrée réduite. Si X suit la loi normale \mathcal{N}\left(\mu;\sigma^2\right), on a les valeurs remarquables suivantes: p\left(\mu - \sigma \leq X \leq\mu + \sigma\right) \approx 0{, }683 p\left(\mu - 2\sigma \leq X \leq \mu + 2\sigma\right) \approx 0{, }954 p\left(\mu - 3\sigma \leq X \leq \mu + 3\sigma\right) \approx 0{, }997 N'ayant pas de primitive de la fonction de densité correspondant à une variable aléatoire suivant une loi N\left(\mu;\sigma^2\right), on a besoin de la calculatrice pour déterminer des probabilités d'événements.

Cours Loi De Probabilité À Densité Terminale S Uk

En effet, si on interprète X comme la durée de vie d'un appareil, cette égalité signifie que la probabilité que l'appareil fonctionne encore au-delà du temps sachant qu'il fonctionne encore à l'instant est égale à la probabilité que l'appareil fonctionne au-delà du temps. Cela signifie que, pendant l'intervalle, l'appareil ne s'est pas usé puisque son fonctionnement à partir de l'instant est identique à celui qu'il avait à partir du temps. Exercices de probabilités: Loi à densité, loi normale et estimation Les exercices sur les probabilités: Loi à densité, loi normale, fluctuations et estimation arrivent sous peu. Annales de probabilités: Loi à densité, fluctuations et estimation Pour avoir un bon niveau de maths, il faut tout simplement réviser régulièrement, mais aussi, et surtout, s'entraîner et se tester sur divers exercices de maths, comme sur les annales de bac de maths. Les annales du bac sont les meilleurs exercices puisque ce sont des sujets déjà tombés lors de l'examen. Cours loi de probabilité à densité terminale s r. Les élèves de terminale peuvent donc se rendre compte du niveau attendu le jour de l'examen, mais aussi des exigences et du système de notation de l'épreuve.

Cours Loi De Probabilité À Densité Terminale S Site

Suivez Nicolas KRITTER sur google + ( cours inspiré de celui fait par le professeur de la classe)

Cours Loi De Probabilité À Densité Terminale S Web

Accueil Recherche Se connecter Pour profiter de 10 contenus offerts.

Exemple: P (X ≥ 5) (X ≥ 20) = P(X ≥ 15): la probabilité que X soit supérieur à 20 sachant qu'il est déjà supérieur à 5, c'est la probabilité qu'ils soit plus grand que 15. Pour une machine à laver par exemple, qu'elle ait 5 ans ou qu'elle soit neuve, elle aura la même probabilité de tomber en panne d'ici 15 ans (si on suppose que sa durée de vie suit une loi exponentielle). On demande assez souvent de démontrer ce résultat, voici donc la démonstration (à savoir refaire du coup!! ): (on applique la formule de la probabilité conditionnelle) Or X ≥ t ∩ X ≥ t+h = X ≥ t+h (car [t;+∞[ ∩ [t+h;+∞[ = [t+h;+∞[) donc d'après la formule vue un peu plus haut Et voilà! A savoir refaire évidemment… Avec ces exercices sur la loi exponentielle, ça ne devrait pas te poser de problèmes^^ Surtout que ce sont des exercices d'annales de bac!! Cours loi de probabilité à densité terminale s web. La loi normale est un peu plus compliquée que les précédentes, ce pourquoi on va très souvent se ramener à ce que l'on appelle une loi normale centrée réduite. Qu'est-ce-que c'est que ce charabia?