Nombre Dérivé Exercice Corrigé Anglais

EXERCICE: Calculer le nombre dérivé (Niv. 1) - Première - YouTube

Nombre Dérivé Exercice Corrigé Sur

Cette page regroupe 13 exercices sur les dérivées. Les exercices utilisent la calculatrice de dérivée pour effectuer les calculs de dérivée et fournir les étapes de calcul permettant d'arriver au résultat. Nombre dérivé exercice corrigé en. Tous les exercices corrigés sont accompagnés de rappels de cours sur les dérivées, de conseils méthodologiques permettant une évaluation et une progression autonome. Fonction dérivable en a et nombre dérivé en a f est une fonction et a un point de son ensemble de définition. Dire que f est dérivable en a, et que le nombre dérivé de f en a est L, signifie que la fonction `h -> (f(a+h)-f(a))/h` admet pour limite en zéro le nombre L.

Nombre Dérivé Exercice Corrigé De

Pour déterminer l'expression de $f'$ on applique la formule $\left(\dfrac{u}{v}\right)'=\dfrac{u'v-uv'}{v^2}$ avec $u(x)=x+1$ et $v(x)=x-1$. Donc $u'(x)=1$ et $v'(x)=1$. $\begin{align*} f'(x)&=\dfrac{x-1-(x+1)}{(x-1)^2} \\ &=\dfrac{-2}{(x-1)^2} Donc $f'(2)=-2$ De plus $f(2)=3$ Une équation de la tangente est par conséquent $y=-2(x-2)+3$ soit $y=-2x+7$. La fonction $f$ est dérivable sur $]-\infty;2[\cup]2;+\infty[$. Une équation de la tangente à $\mathscr{C}$ au point d'abscisse $a=-2$ est $y=f'(-2)\left(x-(-2)\right)+f(-2)$. Pour dériver la fonction $f$ on utilise la formule $\left(\dfrac{1}{u}\right)'=-\dfrac{u'}{u^2}$. Exercices sur nombres dérivés. $\begin{align*} f'(x)&=1+4\left(-\dfrac{1}{(x-2)^2}\right) \\ &=1-\dfrac{4}{(x-2)^2} Donc $f'(-2)=\dfrac{3}{4}$ De plus $f(-2)=-1$ Une équation de la tangente est par conséquent $y=\dfrac{3}{4}(x+2)-1$ soit $y=\dfrac{3}{4}x+\dfrac{1}{2}$. Exercice 5 On considère la fonction $f$ définie sur $\R$ par $f(x)=ax^2+2x+b$ où $a$ et $b$ sont deux réels. Déterminer les valeurs de $a$ et $b$ telles que la courbe représentative $\mathscr{C}_f$ admette au point $A(1;-1)$ une tangente $\Delta$ de coefficient directeur $-4$.

Nombre Dérivé Exercice Corrigé En

Le point $A$ est l'intersection de $\mathscr{C}$ avec l'axe des abscisses. Son abscisse vérifie donc l'équation: $\begin{align*} -\dfrac{1}{a^2}x+\dfrac{2}{a}=0 &\ssi \dfrac{1}{a^2}x=\dfrac{2}{a} \\ &\ssi x=2a Ainsi $A(2a;0)$. Le point $B$ est l'intersection de $\mathscr{C}$ avec l'axe des ordonnées. Donc $x_B=0$. $y_B=\dfrac{2}{a}$. Ainsi $B\left(0;\dfrac{2}{a}\right)$. Le milieu de $[AB]$ est a donc pour coordonnées: $\begin{cases} x=\dfrac{2a+0}{2} \\y=\dfrac{0+\dfrac{2}{a}}{2} \end{cases} \ssi \begin{cases} x=a\\y=\dfrac{1}{a}\end{cases}$. Le point $M$ d'abscisse $a$ appartient à $\mathscr{C}$ donc ses coordonnées sont $\left(a;f(a)\right)$ soit $\left(a;\dfrac{1}{a}\right)$. Par conséquent le point $M$ est le milieu du segment $[AB]$. Nombre dérivé exercice corrigé la. [collapse]

Nombre Dérivé Exercice Corrigé Le

Exercice 3 Le point $A(-2;1)$ appartient à cette courbe et la tangente $T_A$ à $\mathscr{C}_f$ au point $A$ passe également par le point $B(-3;3)$. En déduire $f'(-2)$. Correction Exercice 3 Les points $A(-2;1)$ et $B(-3;3)$ appartiennent à la droite $T_A$. Donc $a=\dfrac{3-1}{-3-(-2)}=-2$. Une équation de $T_A$ est par conséquent de la forme $y=-2x+b$. Le point $A(-2;1)$ appartient à la droite. Ses coordonnées vérifient donc l'équation de $T_A$. $1=-2\times (-2)+b \ssi b=-3$ Une équation de $T_A$ est alors $y=-2x-3$. Le coefficient directeur de la tangente à la courbe $\mathscr{C}_f$ au point d'abscisse $-2$ est $f'(-2)$. 1S - Exercices corrigés - Dérivation - tangente. Par conséquent $f'(-2)=-2$. Exercice 4 Pour chacune des fonctions $f$ fournies, déterminer une équation de la tangente à la courbe $\mathscr{C}$ représentant la fonction $f$ au point d'abscisse $a$. $f(x)=x^3-3x+1 \quad a=0$ $f(x)=\dfrac{x^2}{3x-9} \quad a=1$ $f(x)=\dfrac{x+1}{x-1} \quad a=2$ $f(x)=x+2+\dfrac{4}{x-2} \quad a=-2$ Correction Exercice 4 La fonction $f$ est dérivable sur $\R$.

\) Son équation réduite est donc du type \(y = f'(a)x + b. \) On sait en outre que pour \(x = a\) il y a un point de contact entre la tangente et la courbe, donc \(f(a) = f'(a)a + b\) et alors \(b = f(a) - f'(a)a. \) Par conséquent \(y = f'(a)x + f(a) - f'(a)a\) Factorisons par \(f'(a)\) pour obtenir \(y = f(a) + f'(a)(x - a)\) et le tour est joué. Soit la fonction \(f: x↦ \frac{1}{x^3}\) définie et dérivable sur \(\mathbb{R}^*\) Déterminer l'équation de sa tangente en \(a = -1. \) Commençons par le plus long, c'est-à-dire la détermination de \(f'(-1)\) grâce au taux de variation. Nombre dérivé - Première - Exercices corrigés. \[\frac{\frac{1}{(-1 + h)^3} - \frac{1}{-1}}{h}\] Comme l'identité remarquable au cube n'est pas au programme, nous devons ruser ainsi: \(= \frac{\frac{1}{(-1 + h)^2(-1 + h)} + 1}{h}\) \(= \frac{\frac{1}{(-1 -2h + h^2)(-1 + h)} + 1}{h}\) \(= \frac{\frac{1}{-1 + h + 2h - 2h^2 - h^2 + h^3} + 1}{h}\) \(= \frac{\frac{1 + h^3 - 3h^2 + 3h - 1}{h^3 - 3h^2 + 3h - 1}}{h}\) \(= \frac{h(h^2 - 3h + 3)}{h(h^3 - 3h^2 + 3h - 1)}\) \[\mathop {\lim}\limits_{h \to 0} \frac{{{h^2} - 3h + 3}}{{{h^3} - 3{h^2} + 3h - 1}} = - 3\] Donc \(f\) est dérivable en -1 et \(f'(-1) = -3\) Par ailleurs, \(f(-1) = -1.