Regression Logistique Python

Ce dataset décrit les espèces d'Iris par quatre propriétés: longueur et largeur de sépales ainsi que longueur et largeur de pétales. La base de données comporte 150 observations (50 observations par espèce). Pour plus d'informations, Wikipedia fournit des informations abondantes sur ce dataset. Lors de cette section, je vais décrire les différents étapes que vous pouvez suivre pour réussir cette implémentation: Chargement des bibliothèques: Premièrement, nous importons les bibliothèques numpy, pyplot et sklearn. Scikit-Learn vient avec un ensemble de jeu de données prêt à l'emploi pour des fins d'expérimentation. Tutoriel de classification de fleurs d'IRIS avec la Régression logistique et Python. Ces dataset sont regroupés dans le package sets. On charge le package datasets pour retrouver le jeu de données IRIS. #import des librairies l'environnement%matplotlib inline import numpy as np import as plt from sklearn import datasets Chargement du jeu de données IRIS Pour charger le jeu de données Iris, on utilise la méthode load_iris() du package datasets. #chargement de base de données iris iris = datasets.
  1. Regression logistique python examples

Regression Logistique Python Examples

Nous devons tester le classificateur créé ci-dessus avant de le mettre en production. Si les tests révèlent que le modèle ne répond pas à la précision souhaitée, nous devrons reprendre le processus ci-dessus, sélectionner un autre ensemble de fonctionnalités (champs de données), reconstruire le modèle et le tester. Ce sera une étape itérative jusqu'à ce que le classificateur réponde à votre exigence de précision souhaitée. Regression logistique python 1. Alors testons notre classificateur. Prédire les données de test Pour tester le classifieur, nous utilisons les données de test générées à l'étape précédente. Nous appelons le predict méthode sur l'objet créé et passez la X tableau des données de test comme indiqué dans la commande suivante - In [24]: predicted_y = edict(X_test) Cela génère un tableau unidimensionnel pour l'ensemble de données d'apprentissage complet donnant la prédiction pour chaque ligne du tableau X. Vous pouvez examiner ce tableau en utilisant la commande suivante - In [25]: predicted_y Ce qui suit est la sortie lors de l'exécution des deux commandes ci-dessus - Out[25]: array([0, 0, 0,..., 0, 0, 0]) Le résultat indique que les trois premier et dernier clients ne sont pas les candidats potentiels pour le Term Deposit.

La fonction h qui définit la régression logistique s'écrit alors: Tout le problème de classification par régression logistique apparaît alors comme un simple problème d'optimisation où, à partir de données, nous essayons d' obtenir le meilleur jeu de paramètre Θ permettant à notre courbe sigmoïde de coller au mieux aux données. C'est dans cette étape qu'intervient notre apprentissage automatique. Une fois cette étape effectuée, voici un aperçu du résultat qu'on peut obtenir: Il ne reste plus, à partir du seuil défini, qu'à classer les points en fonction de leurs positions par rapport à la régression et notre classification est faite! Implémentation de la régression logistique à partir de zéro en utilisant Python – Acervo Lima. La régression logistique en pratique En Python c'est assez simple, on se sert de la classe LogisticRegression du module near_model comme un classificateur normal et que l'on entraîne sur des données déjà nettoyées et séparées en ensembles d'entraînement et de test puis le tour est joué! Niveau code, rien de plus basique: Pour des cas d'applications plus poussés, pourquoi ne pas suivre le cours dispensé par l'équipe Datascientest?