Exercice De Géométrie, Repère, Seconde, Milieu, Distance, Parallélogramme

sont égaux, c'est donc qu'ils ont des coordonnées égales. Ainsi: x C + 2 = -12 et y C 5 = 24 x C = -14 et y C = 29. Le point C a donc pour coordonnées (-14; 29). 2nde solution. La plus calculatoire: on passe directement aux coordonnées. Point de vecteurs, nous allons travailler sur des nombres. Comme (-2 x C; 5 y C) et (4 x C; -7 y C) alors le vecteur a pour coordonnées ( 3 (-2 x C) 2 (4 x C); 3 (5 y C) 2 (-7 y C)). Ce qui réduit donne (- x C 14; -y C + 29). Vu que les vecteurs et sont égaux, c'est donc qu'ils ont des coordonnées égales. Ainsi: - x C 14 = 0 et -y C + 29 = 0 Quelques remarques sur cet exercice: La géométrie analytique a été instituée pour simplifier la géométrie "classique" vectorielle. LE COURS : Vecteurs et repérage - Seconde - YouTube. En effet, il est plus facile de travailler sur des nombres que sur des vecteurs. Cependant, dans certains cas, pour éviter de fastidieux calculs souvent générateurs d'erreurs(c'est le second cheminement), on peut avoir intérêt à simplifier le problème(comme cela a été fait avec la première solution).

  1. Geometrie repère seconde du
  2. Geometrie repère seconde de

Geometrie Repère Seconde Du

4) Coordonnées d'un point défini par une égalité vectorielle. Dans ce dernier paragraphe, nous allons mettre en oeuvre concrètement au travers d'un exercice toutes les propriétés que nous venons de voir. L'exercice: A(-2; 5) et B(4; -7) sont deux points du plan. Le point C est défini par. Déterminer les coordonnées du point C. Cet exercice peut tre rsolue de plusieurs d'entre elles. Voici deux d'entre elles: Deux réponses possibles: Dans ce qui suit, le couple (x C; y C) désigne les coordonnées du point C que nous cherchons. Deux cheminements sont possibles. 1ère solution. Chapitre 8: Géométrie repérée - Kiffelesmaths. La plus simple: on cherche à réduire cette relation vectorielle. On va chercher à exprimer en fonction de. On utilise ainsi un peu de géométrie vectorielle avant de rentrer dans la géométrie analytique. La relation de Chasles nous permet de simplifier la relation vectorielle. Ainsi: Le vecteur a pour coordonnées (x C + 2; y C 5). Comme (6; -12) alors le vecteur 2. a pour coordonnées (-12; 24). Vu que les vecteurs et 2.

Geometrie Repère Seconde De

Exemple 1: Dans le repère $(O;I, J)$ on considère $A(4;-1)$ et $B(1;2)$. Ainsi les coordonnées du milieu $M$ de $[AB]$ sont: $\begin{cases} x_M = \dfrac{4 + 1}{2} = \dfrac{5}{2}\\\\y_M = \dfrac{-1 + 2}{2} = \dfrac{1}{2} \end{cases}$ Exemple 2: On utilise la formule pour retrouver les coordonnées de $A$ connaissant celles de $M$ et de $B$. On considère les points $B(2;-1)$ et $M(1;3)$ du plan muni d'un repère $(O;I, J)$. Soit $A\left(x_A, y_A\right)$ le point du plan tel que $M$ soit le milieu de $[AB]$. On a ainsi: $\begin{cases} x_M = \dfrac{x_A+x_B}{2} \\\\y_M = \dfrac{y_A+y_B}{2} \end{cases}$ On remplace les coordonnées connues par leur valeurs: $\begin{cases} 1 = \dfrac{x_A+2}{2} \\\\3 = \dfrac{y_A-1}{2} \end{cases}$ On résout maintenant chacune des deux équations. Geometrie repère seconde édition. Pour cela on multiplie chacun des membres par $2$. $\begin{cases} 2 = x_A + 2 \\\\ 6 = y_A – 1 \end{cases}$ Par conséquent $x_A = 0$ et $y_A = 7$. Ainsi $A(0;7)$. On vérifie sur un repère que les valeurs trouvées sont les bonnes.

La démonstration du théorème requiert donc que nous prouvions successivement que: Entamons les hostilités: (i) Si = alors ils ont même coordonnées. Ou plutôt les coordonnées de lun sont les coordonnées de lautre. Ainsi vient-il que x = x et y = y. Réciproquement: (ii) Supposons que x = x et y = y. Ainsi les vecteurs (x; y) et (x'; y') sont-ils égaux. Ce qui quelque part est quand même rassurant! Coordonnées de vecteur, addition vectorielle et produit par un réel. Lavantage des coordonnées, cest quelles laissent tout passer: de vraies carpettes! De modestes preuves de ce modeste théorème: Lénoncé comportant deux points, la démo comportera donc deux points. Il vient alors que: Autrement dit, le vecteur k. a pour coordonnées (k. x; k. y). Lien entre coordonnées dun vecteur et celles dun point. Geometrie repère seconde de. Les coordonnées dun vecteur peuvent sexprimer en fonction des celles de A et de celles de B. La preuve (après la proposition... ) La preuve: En effet, si A et B ont pour coordonnées respectives (x A; y A) et (x B; y B) alors Ainsi: Ainsi les coordonnées vecteur sont-elles (x B - x A; y B - y A).