Combien De Triangles Dans Cette Figure Solution

Dénombrement de triangles Combien y a-t-il de triangles dans cette figure? Combien y en aurait-il dans le cas d'une figure comportant 50 points alignés et numérotés sur la demi-droite d? Un coup de pouce: En consignant les résultats sous forme d'un tableau: Situation n° nombre triangles Calculs 1 1 1 2 3 (1) + 2 3 6 (3) + 3 = [(1) + 2] + 3 = 1 + 2 + 3 4 10 6 + 4 = [ 1 + 2 + 3] + 4 = 1 + 2 + 3 + 4 L'observation du tableau permet d'affirmer que la situation 50 comptera 1+2+3+4+5+6+... +47+48+49+50 triangles. L'article Une somme de travail? permet d'écrire 1 + 2 + 3 +... + 48 + 49 + 50 = [ 50. 51]: 2 = 1275 La ligne 50 compte donc 1275 triangles.

Combien De Triangles Dans Cette Figure Solution Ma

Si oui, continuez à lire, sinon, arrêtez-vous ici, prenez cinq minutes pour réfléchir, et revenez pour lire la suite. Il y a plusieurs méthodes pour trouver le nombre de triangles. Vous pouvez les compter un par un dans tout le grand triangle, où vous remarquez qu'il y a six triangles par rangée. Vous avez donc à multiplier six par le nombre de rangées (quatre), le résultat est donc vingt-quatre. Mais le dessin est accompagné d'une signature, et la question est "Combien y'a t'il de triangles? ". La signature porte le nom d'Amy, et le A comporte un autre triangle. Le total serait donc de 25 triangles? Beaucoup ne sont pas d'accord et pensent que la signature ne compte pas. Et vous, de quelle équipe faites-vous partie?

Combien De Triangles Dans Cette Figure Solution La

Posté par Brigitte re - fonction combien y a t il de triangles 30-03-05 à 18:52 J'ai regardé dans le dictionnaire... Merci encore et bonne soirée.

Combien De Triangles Dans Cette Figure Solution Du

Il contient 6 triangles encore plus grands de 3 unités de côté (ou composés de 9 petits triangles). Il contient 3 grands triangles de quatre unités de côté (ou composés de 16 petits triangles) et finalement 1 triangle de cinq unités de côté (ou composé de 25 petits triangles). On obtient bien 25 + 13 + 6 + 3 + 1 = 48 Non sans effort, vous pourrez dresser le tableau suivant pour les premières valeurs de n (en comptant séparément les plus petits triangles de côté k): Et pourtant, encore une fois, aucune régularité ne semble transparaître (enfin pour moi…) J'ai soumis ce problème à mes élèves (pour leur montrer qu'un problème simple peut avoir une solution loin d'être triviale) et un de ceux-ci est venu me voir avec ses calculs. Il avait fait un tableau semblable au miens mais n'avait compté (par mégarde) que les triangles "à l'endroit", c'est-à-dire ceux qui pointent vers le haut. Ah! Erreur d'un élève? Nouvelle piste? Il s'avère que décomposer le problème en un problème de "nombre triangles pointant vers le haut" et "nombre triangles pointant vers le bas" (plutôt que "nombre de triangles de k unités de côté") s'avère drôlement fructueux.

Les huit premières sont consignées dans le tableau suivant: 1 2 3 4 5 6 7 8 … 13 27 48 78 118 170 On peut calculer de proche en proche toutes les valeurs de k plus grandes à partir des expressions de récurrence précédentes ou bien on peut utiliser une astuce. Comme la différence entre deux éléments consécutifs \(N_{k+1}-N_k\) apparait clairement dans les expressions, il est assez naturel d'examiner cette nouvelle suite, puis de nouveau la différence entre deux valeurs consécutives ainsi obtenues. La figure 4 montre ce que l'on obtient en faisant cette opération trois fois de suite. Figure 4: Tableau des différences de deux termes consécutifs. La dernière ligne est très régulière (et particulièrement simple): elle est constituée d'une alternance de 2 et de 1. Et ceci reste vrai pour les valeurs de k aussi grandes qu'on le veuille! Cette remarque nous permet d'imaginer une solution simple « de proche en proche » qui permet de compléter le tableau quel que soit k en remontant de bas en haut, comme on le voit dans la figure 5 (on obtient \(N_9=235\) en calculant d'abord \(13=12+1\), puis \(65=52+13\) et enfin, \(235=170+65\)).